Controlling your dust extraction with a blast gate

Blast gates for controlling air flow are not a new thing but buying them off the shelf can be an expensive shopping experience, plus they’re only available in fixed sizes. I’m using 110mm UK drain pipe which there certainly isn’t a suitable gate for.

Clearly any self respecting woodworker has the skills to be able to build their own. I took some inspiration from Jay Bates and Marius Hornberger both of whom have brilliant YouTube channels that you should subscribe to.

But this is a hackspace blog post, so clearly that’d be a bit too straight forward… how about if we laser cut them?


That’s heading more in the right direction. That’s a pretty nice design as a starting point. I ended up having to tweak the design to account for a slightly different diameter pipe fitting (mainly because I forgot to measure it before going to the hackspace and guessed wrong). But neat trick if you happen to do this, cut another one the right size and then when it’s finished very carefully lift it out of the cutter without moving the board you cut it out of, now drop your badly sized one in the hole and re-cut. Obviously that only works if it’s too small, or you have a magic laser that glues bits back on… no, wait, that’s a 3d printer.

So our Blast Gate Mark 1 is available over on GitHub which looks a bit like this:


Parts list:

You’ll obviously need a laser cutter, we always recommend those awesome guys at Just Add Sharks because they rock!

Assembly notes:

  • The shorter bolts fix the handles to the gate
  • Squares with the larger hole go on the outside
  • The tricky bit is putting all your gate bolts in, adding the side strips, adding a washer and then adding your second set of gate pieces


This is important, don’t over tighten this or your gate won’t side. I recommend the use of a cordless drill with torque setting that you can wind right down to low. As long as you can’t rotate them by hand, they are tight enough.

Having assembled your gates, you should have something that looks like the header picture above. Now we need to cut the pipe fitting in half and attach it to the gate. Safely cutting the plastic coupler in half without a big enough lathe is a hard thing to achieve, so having had a think about how to do this I came up with something that will undoubtedly make some people twitch like crazy:

2017-03-15 15.28.38-1

That’s a Dremel speedclic plastic cutting wheel on an arbor, in a pin vice, in a pillar drill, yes. I did warn you. A safer way to achieve this would be to use a lathe if you have one big enough (the pipe couplng for this goes around the chuck of my small lathe). This technique gives accuracy whilst being the safest I could think of with the equipment at hand.

2017-03-15 15.37.10

I cut mine to have the tabs on the end with the seal as that’s the one I plan to stick an extraction hose end into.

Once the coupling is cut, glue it in place on either side of the gate. I used Screwfix’s Pink Grip which hasn’t quite set right now but looks like it’s going to do the right thing.


So there we have it, Mark 1 blast gate. Stay tuned for Mark 2 which has electronics to control your extractor.

Presence sensors again!

In my previous two posts I’ve talked about hacking cheap presence sensors to work on 24v DC rather than mains.

As does happen with these things, we’ve ended up with another different style of sensor from the same supplier!


The design of this one is actually more complicated than we’ve seen previously making use of zenner diodes to drop the +24v DC to 5v for the front panel PCB.


Thanks once again to Malc who eventually gave up trying to make this design work and posted me three up to look at, I shall enjoy the beer on you mate 😉

Hack on!


Annual General Meeting 2017

The AGM for Lancaster and Morecambe Makers will take place on Monday 27th February 2017 at 19:00 GMT   at the Space


Please could all Members make the effort to attend this meeting, if you cannot attend we will require proxy votes beforehand


If you would like to raise anything please let one of the directors know by the 19th February, so that we can add it to the agenda. The agenda will be circulated before the meeting to allow time for Proxy votes


In accordance with our Articles of association two of the directors will stand down at the AGM to allow others to become directors.

If anybody wishes to nominate or be nominated to the board please let us know before the 13th February 19:00 GMT.

Please submit in writing  a statement with the intention to propose the appointment of a person as a director; contains the details that, if the person were to be appointed, the association would have to file at Companies House; and is signed by the person who is to be proposed to show his or her willingness to be appointed.

Please submit any point, proxy votes or  nominations to

The two directors who will be standing down this time will be:

Ian Norton and Claire L Jackson
Thank you

Prusa i3 3D printer build

We recently decided that we needed a new 3D printer for the space, given that one of the members who had been kindly lending us their printer (thanks Vic Harkness) has moved away, and the other main printer we have, which is also lent by a member, is currently not working. We’ve had several people joining recently because they wanted to do 3D printing, so we decided it was important to have a printer that was owned by the space, which we could maintain collectively. We settled on a kit of the Prusa i3 printer from (see image, which is copied from their site).

Original prusa i3 mk2 kit

The box arrived just in time for our Wednesday open meeting last week, and was eagerly unpacked. As several other blog posts I’ve read have said, it was immediately obvious that a lot of care had gone into the design and also the packing of this kit. The outer box was pretty substantial and all the parts were well organised and neatly packed inside smaller boxes. The 3D printed parts and smaller fixings were put in plastic bags labelled by the assembly they belonged to, which makes it easy to work through the assembly manual and know that you have all the parts for the current step to hand. There were even screen printed labels on the motors to say which axis they belonged to.

Starting unpacking
Starting unpacking

Due to peoples’ time commitments, we had to wait until Monday morning to make a start on building the printer. The building was done by Gustavo Carreno and Andrew Baxter.

The assembly manual was pretty clear and helpful, with colour coded photos of the tools needed and the 3D printed parts used in each step. There is an online version available on the prusa3d website, which people are advised to consult in case of problems. The online version is also useful if you can’t make out the details in some of the pictures.

The assembly manual
The assembly manual

The main thing to say about the build process, apart from a few small points I’ll make later, is that it’s pretty much just a question of preparing yourself for a number of hours of careful assembly work, following the instructions step by step. (We did it over 3 days, but two of them were half days. Some people have done it in an afternoon, but expect to take longer if you’ve not built a printer before). None of the steps are that difficult in themselves – you just need to keep paying attention to what you’re doing. I would suggest that it might be worth at least skim-reading through the instructions for each stage of the assembly before you work though and build that stage, just to get an idea of where you’re going with it. However we mostly just worked through in order and didn’t have any real problems.

Gus working on the Y-carriage
Gus working on the Y-carriage

One thing that we did a bit differently from the manual, which I think is worth passing on, was to do with aligning the y-axis stage. If you look at the assembly manual, on page 6 of the version I have, under ‘Step 6 – Fully assemble the Y-axis stage’, it points out that it’s important to get the axis perfectly rectangular at this point, or you’ll have trouble calibrating later. One thing here is that it’s probably better to get a reasonable alignment here, but wait until a few steps further on before you really try to get it precise. This is because in the following steps you will be fitting the stage to the main frame, and also to the smooth rods that carry the Y-carriage, so some of the dimensions may need to be changed.

Another thing is that the automatic calibration process is actually pretty good, at least at aligning the X and Y axes, so the kit should be reasonably forgiving of small alignment errors. In other words don’t do what we did and spend a whole morning trying to get the Y-stage perfectly aligned, only to discover that (a) as I’ve said above we then needed to change things again, and (b) the automatic calibration takes out most small errors anyway!

You might also like to try the following trick for getting the frame rectangular and level. Do this after you’ve fitted the length of the carriage to the 8mm smooth rods, as in step 10, but skip step 9 (‘tighten the sides to the y-axis stage’) for now. In other words, at this point you should have fully assembled the Y-axis stage, and adjusted the length of it to the smooth rods.

Aligning the Y-axis stage
Aligning the Y-axis stage

What we did next was to start by loosening all the M8 nuts on the Y-axis stage, so that it could adjust in width (but not length) to fit the main frame.  Next we slid the front end of the stage into the slots in the frame, setting the width. Then, which is what is different from in the manual, we moved two of the loose M10 nuts which will eventually hold the frame in its final position all the way down the threaded rod until they could be used to clamp onto the frame, and used a spanner to tighten them, as shown in the picture above. The idea was that with the M8 nuts still loose, this would force the two M10 rods to be close to perpendicular with the frame and thus make the stage rectangular. Then at this point we carefully tightened all the M8 nuts.

Finally we took the Y-axis stage out of the frame and used a ruler to check all of the widthways and lengthways dimensions at each end, and made final adjustments as appropriate. Whether this is better than what the manual suggests, I’m not sure, but we did okay when it came to running the automatic calibration.

Gus admiring the completed Y-axis
Gus admiring the completed Y-axis

The X and Z axis assemblies were pretty straightforward – as I said above just a case of working through the instructions carefully. Tightening the X (and Y) axis belts was a little bit tricky – the knack seems to be to make a loop of about the right length held in a pair of pliers, then keep trying it against the belt holder and if it’s too loose, keep moving it tighter one tooth at a time and trying it again.

Andy working on the extruder assembly
Andy working on the extruder assembly

Don’t do what we did and forget you can slide the whole X-axis down along the Z-axis to get to the back of the X-carriage and work on the belt. You might also like to pause at this point and admire the skull-like appearance of the back of the X-carriage!

Yes the X Carriage really does look like a skull from behind
Yes the X Carriage really does look like a skull from behind

The extruder was also pretty straightforward to assemble. Managing all the cables going from the extruder to the electronics was tricky, but we did all right following the instructions step by step. Using a piece of 3mm filament to stiffen the cable bundle is a neat trick.

Gus working on the cable management
Gus working on the cable management

After the extruder, it was time for the LCD assembly. The main thing here was to be careful not to crack the circuit board of the LCD while getting it into the plastic frame.

LCD assembly completed
LCD assembly completed

Next was the power supply and heated bed.

With the power supply and heated bed assembled
With the power supply and heated bed assembled

Finally, it was time to wire it all up – the electronics assembly. One difficulty here was that because all the parts on the electronics housing are black, it was hard to make out what is what in the printed photos. The online manual is useful here. Getting all the cables to the right place needs a bit of care, as many of them take the same fittings. However if you just follow the manual and double check each stage of the assembly you should be okay.

Gus wiring up the electronics
Gus wiring up the electronics

Finally, after 3 days work, on and off, we had a fully assembled printer. At this point, we had to break while I (Andy) went to an un-missable appointment and had lunch. Gus chivalrously waited for me to get back before we did the grand turn on.

Somewhat to our surprise (mine anyway), it passed all its tests first time. The calibration took a while but went all right (although the first time we did it, the printer seemed to lose the settings when we turned it off and we had to re-calibrate). It was interesting to see how it first scanned roughly around the points where the calibration markers were, and then homed in on them more precisely.

Then it was time to do the first print. There are several prints on the SD card that comes with the printer – we chose the Prusa logo, which came out nicely.

Printing out the Prusa logo.
Printing out the Prusa logo.

I don’t want to spend too much time on a review of how the printer works – this post is meant more as a guide to the build process rather than a review. Maybe one of us can do a review of the printer when we have a bit more experience using it. However, my first impressions are very positive. The prints are as good as or better than the Lulzbot TAZ we were using before, the calibration system is very neat indeed, and the LCD controls are easy to operate.

In summary, I’d say that this is a well designed and neatly packaged kit which anyone with a reasonable level of mechanical aptitude should be able to put together over a couple of days without too much trouble.

Build A Bug and Save Your Mobile

The Event

October sees the annual, full-weekend, Lancaster fun Palace return to Lancaster Library and just as we did in June LAMM will be playing a great part.

LAMM will be holding two great mini-builds as part of their series of Fun Palace events. Last time we were at the Library LAMM successfully entertained you with the very popular Gadget Destruction event which saw us, and you, tear up a host of gadgets and computer equipment to demystify modern electronics and find reusable parts (watch the video here). This time our theme is construction.

For our two day events we will be holding two different workshops, continuously throughout both days. The first if Build A Bug and the second Save Your Mobile.

Build A Bug

Kids and adults will love this workshop as we teach you how to build your own small wooden bug from a range of coloured wooden parts. There are a host of shapes to choose from in a variety of colours which will mean that bugs can be individualised by you and your child. The fun doesn’t stop there. Our bugs have light up eyes, or legs, or wings, but probably eyes, as we add a battery and some LEDs to the build.

This workshop will allow young minds to blossom in a creative and fun project and teach them elements of construction, design and simple electronics. Best of all they get to take the bug home at the end.

Save Your Mobile

How many of us have an electronic device, a mobile or small media device, that has an easy to scratch screen, or a shiny case that picks up every scratch or dent of the pocket or bag we toss it into. Sure you could buy a case or a pouch for it, but anyone can do that…

LAMM will show you how to build your own pouch out of simple materials using a traditional method that is hundreds of years old. Learn a traditional craft with a mini-loom and make a pouch for your device that is as individual to you as you want it to be. Once again you can take away your creation after the end of the workshop.

A Thank You

Materials for the construction of both bugs and covers have been kindly donated by LAMM (members) and by Lune Crafts. Build A Bug is based on an original design developed by Hacman (the Manchester Hackspace).

…a bit more info

You can see more details about this event on the Lancaster Fun Palace Website:

Lancaster Fun Palace

Presence sensors revisited

In my previous post I talked about 24v presence sensors for Loxone home automation:

Is there anybody there? Click once for yes!

Shout out to Malc Crook ( and Adam ( who both contacted me to say that the PIR linked to in the original post is no longer the one you get when you order the same item from the same seller 🙁

Fear not, for I have hacked the new one this evening and it’s pretty straight forward 🙂


Well that mostly looks similar…


Still looks similar…


Well that’s different. The two boards are fixed together and the front board has to come away from the plastic shafts for altering the time and lux level


Those are really annoying to get back in but I’ll come back to that.


Different AC supply board this time around. Let’s take a look see what’s going on..


So capacative dropper is driving an actual bridge rectifier this time rather than four discrete diodes. Seems like there’s a lot here we don’t need….


I always end up with spare bits when I take things apart….


Right, so now we look like:


So having removed all but the diodes for protection and the capacitor for smoothing the supply, we’re left with +24v going in and a working automation PIR! I put the front board in place without screwing it in and put the spacers on the back board as it came but without the screws. We’re no longer dealing with mains voltage and the spacers keep everything sensibly… well… spaced… Best update the labelling…


That’s a bit neater than the previous scribblings with a sharpie… 🙂

I’m hoping that step by step pictures and the diagram will make it clear how this change works. The PIR module is 24v all along, all we did was remove the AC components and drive it directly.

There doesn’t seem to be an LED on this model. The relay is triggered by dropping the signal line from the front board to 0v. It floats at +24 otherwise so technically we could lose the relay completely and drive that back to an input. I’ve not tested that so your mileage may vary.

Hopefully that update will be useful to people!

Keep hacking, Ian.

Why make when you can bake

The upcoming open Saturday (Saturday 17th September) will see a change to the hackspace.  While we busy ourselves with preparation for the Lancaster Fun Palace (October 1st and 2nd), there will be something spongy, crispy, something with a lovely crumb or maybe a good snap. Yes that’s right we will be holding an informal bake off.chocolate-cake-1576494_640

If you watch the BBC, you’ll be no stranger to The Great British Bake Off which started back on the telly last week. Quite a few of us seem to be keen bakers, so for a bit of fun we’ll be taking our best bakes into the space for a bit of a competition.

There will be three prize wining classes

  1.  Biscuits or Cookies
  2. Bread
  3. Cake

Please feel free to bring your best bakes and join in

Prizes will be given for the best in each class chosen by those there.

(Please note we will NOT be baking in the space)

Okay so that’s the fun part.

We do need peoples help to prepare for the Fun Palace and there are, as always, jobs to be done around the space.

Fun at the Fun Palace

Last Saturday (18th June) the Lancaster and Morecambe Makers were hosting a ‘Gadget Destruction’ workshop as a part of the Lancaster Mini Fun Palace.

What is Gadget Destruction?

Well it is as simple as it says on the tin, it is a chance to take apart gadgets and items and see how they tick.

The theory works like this:

We all pass through the stage of wanting to pull apart things to see how they work (some of us never leave that stage). Often though we do not get the chance. If they are functional then our parents/guardians and siblings might be a little miffed if we take a screwdriver to the items. If they are broke we may not be praised for the mess or potential danger.

The destruction of gadgets creates a lot of e-waste
The destruction of gadgets creates a lot of e-waste

Gadget Destruction with the local Makers gets around that issue. We have a bunch of adults who have happily taken things apart for years and sometimes put them back together, fixed, or as essential components in something new.

We also have a lot of experience in guessing a function by what the item is connected to, and we learned those from friends, books, the internet, TV and by pulling stuff apart. We like to share in taking things apart and we want to make sure that people learn the skill in doing that. It isn’t just by force (though occasionally force is used) mostly it is by working out the many ways that things are fixed, learning how to take it apart helps in learning how to put it back together.

We are also experienced in knowing what can be a danger before you take a screwdriver to it (so we took away batteries and other hazardous items that were easy to remove or taken out during the destruction process).

How Went the Day?

We had a great time. Thanks to a whole load of gadgets donated to take apart, laptops, monitors, desktops and other assorted paraphernalia. Some people even brought their own.

We had a spectacular group of people who came to visit us. I didn’t have time to count how many came through but at one point there were twenty children between ages three to twelve, with their parents, all taking something apart.

Taking things apart
Children of all ages studiously taking things apart

The Library staff and Fun Palace organisers were very helpful and very supportive and seemed to love allowing us to cause a small area of mayhem in the centre of the library (we did however clean up after ourselves).

Cleaning up after the event
Cleaning up after the event

The kids loved it. I had parents telling me that their normally fidgety children had spent three hours quietly destroying things. But it wasn’t really destruction, it was just messy education 😉

The thrill of being able to pull apart a laptop, or a TV or a toaster was exhilarating and liberating. The look of delight on faces when asked ‘what can I take apart’ and you answer ‘want to pull the rare magnets out of a laptop?’.

As for me, I brought along a five year old who loved being able to take apart a laptop and spent a good twenty minutes playing with diffusers from a television. It was ace.

Ben and the diffuser
Ben and the diffuser

So even though I was a part of this and loved being on the ground on the day, I want to say thanks to all my fellow LAMMers. This includes those who couldn’t make it on the day but helped in the preparation and take down of the event. You’re all stars.

PAD-03 laser control panel

Our Just Add Sharks Greyfin laser cutter is an awesome piece of kit supplied by a UK based company who really love to engage with their customers – in short Dominic and Martin are awesome community players who love the hackspace movement as much as we do.

But what happens when you want functionality that your machine doesn’t provide? Perhaps you want people to log in and record the timings for billing purposes.

Continue reading PAD-03 laser control panel